Lee Smolin: Las dudas de la física en el siglo XXI

Hoy voy a traer una recomendación muy especial para mí. Un libro de ciencia divulgativa del genial Lee Smolin, con el título «las dudas de la física en el siglo XXI». Y con un subtítulo muy sugerente: «¿es la teoría de cuerdas un callejón sin salida?»

Este libro tiene unos años, pero sigue siendo completamente actual. Además, no solo habla de la física teórica actual de forma brillante, sino de sociología de la ciencia, y de cómo el sistema científico actual adolece de cierto rigor para el análisis de sus propios métodos de trabajo. Por ello, Smolin considera que una teoría como la de cuerdas, que debería estar muy cuestionada, sin embargo sigue teniendo grandes apoyos.

Una obra brillante, inteligente, y propia del genio que es Lee Smolin, uno de los padres de la teoría de la gravedad cuántica de bucles, teoría que él sabe no es definitiva, pero que es más valiente y directa afrontando el problema de unir la relatividad general con la mecánica cuántica. Lectura muy recomendable para cualquier interesado en conocer el estado actual de las ciencias físicas.

lee_smolin_dudas_de_la_ciencia

75 años de Stephen Hawking

Hoy celebramos el 75 aniversario de Stephen Hawking, sin duda uno de los científicos más conocidos y populares de esta época. Comparado con Einstein en muchos aspectos, es un hombre que ha destacado también en su vida gracias a su persistencia en combatir una enfermedad degenerativa terrible sin duda, pero que no le ha impedido llevar a cabo grandes logros, tanto científicos como personales.

Quizás en el plano científico una de sus mayores contribuciones sea la radiación Hawking. Se pensaba que los agujeros negros son completamente opacos e impermeables. Pero Hawking teorizó que realmente se evaporan, en una fórmula que trata esa evaporación como la inversa de la masa del agujero negro.

El asunto está relacionado con el horizonte de sucesos, esa línea donde todo lo que entra, incluso la luz, ya no puede volver a salir. Sin embargo, la mecánica cuántica nos dice que una partícula tiene una probabilidad determinada de encontrarse en diversos puntos del espacio. Si una de esas partículas, cerca del horizonte de sucesos, se encuentra de pronto fuera de dicho horizonte de sucesos, la partícula podrá escapar y seguir su camino. Esa sucesión de partículas que escapan, y que restan masa al agujero negro, es la radiación Hawking.

Felicidades al gran científico, y esperemos seguir disfrutando de su ciencia y su personalidad durante muchos años. Vive una situación difícil, y ya casi no puede mover ningún músculo, pero es un ejemplo de superación que siempre nos asombrará. Una lección de vida para todos.

stephenhawking
Stephen Hawking

Al universo no le preocupamos, en absoluto

El cartel reza: «Departamento de físicas Heisenberg. Usted probablemente está aquí». Y el chiste tiene algo de razón. Probablemente estamos en algún lugar de casa leyendo esto, o en el trabajo, o donde sea. Pero solo en parte.

Porque… ¿sabía usted que, según la mecánica cuántica y de la función de ondas de Heisenberg, existe una probabilidad mínima, pero mayor de cero, de que alguna de sus partículas se encuentre al otro lado del universo?

El universo es como es, y no le importan ni le interesan nuestros prejuicios y convicciones. Las partículas son ondas de probabilidad, no se puede medir su estado completo con total seguridad. Cuando analizamos una partícula, solo obtenemos una cierta certeza de su naturaleza. No se trata de un problema con los instrumentos. El universo es así. 

Por eso, cuando afirmemos algo con seguridad y rotundidad, recordemos que esa seguridad no puede aplicarse al universo.

Todo es relativo, es cierto. Pero, además, todo es probable, no seguro. Podemos tener un cien por cien de seguridad en nuestra moral y ética. Pero, cuando aplica al mismo universo, toda esa seguridad desaparece. Esa es la maravilla de la mecánica cuántica. Y ese es, probablemente, uno de los mejores descubrimientos de la historia de la ciencia.

heisenberg

Imagen de la semana: agujeros negros

La imagen de la semana es para un agujero negro. Uno cualquiera, son todos iguales. ¿Cómo de iguales? Se diferencian en la masa que contienen. Pero nada más. El resto de características los convierte en copias perfectas. ¿Por qué?

Porque la entropía en un agujero negro es la máxima posible. Esto significa una cosa: el desorden dentro de un agujero negro es total. La gravedad es tan potente que todo queda demolido literalmente.

Pero, de todas formas, y por mucho que nos hablen de los agujeros negros, y de sus características, la verdad es que hay preguntas importantes que no podemos contestar todavía. Nos cuentan historias de «qué pasaría si cayésemos dentro» etc. Está bien, pero la gran pregunta permanece: ¿cuál es la naturaleza del universo dentro de un agujero negro? O, dicho de otro modo: ¿qué leyes físicas son las que gobiernan el interior de un agujero negro?

Nadie lo sabe. Todavía. En los agujeros negros se entremezclan la teoría de la relatividad general, y la impredecibilidad de la mecánica cuántica. Ambas se fusionan en una teoría mayor, más completa, que engloba ambas, y que después de setenta años sigue siendo un misterio. La teoría que prometía contestar a esa pregunta, las cuerdas, ha sido ya un fracaso. Sí, ha aportado cosas interesantes, pero ni siquiera sus partículas, las partículas supersimétricas, han aparecido. El CERN de Ginebra lo ha intentado. Pero no están ahí. Agujero negro 1: teoría de cuerdas 0. Gol en el último minuto de Stephen Hawking por la escuadra.

Yo personalmente creo que la respuesta de la física de los agujeros negros conllevará una nueva revolución en la física, como la que ocurrió con la relatividad y la mecánica cuántica. Y lo creo porque se habrá respondido a una pregunta que dará muchas vías nuevas de investigación, especialmente la comprensión de la gravedad cuántica, esa parte de la física que se resiste una y otra vez. Claro que podría estar equivocado. Ya veremos.

Lo que es cierto es que el futuro promete ser interesante, y esperemos que no sea negro como los agujeros. Queda un camino importante por recorrer. Pero creo que una nueva generación de físicos traerán respuestas. Los actuales… Bueno, me guardo la respuesta. Tengo mis razones. Pero están enterradas en un agujero negro.

agujero_negro

El diario El País desacredita a Einstein

Observo últimamente que está poniéndose de moda, otra vez, desacreditar a Albert Einstein. Hace unas horas he leído un artículo del diario español El País que habla abiertamente cómo un grupo de estudiantes en un experimento demuestran que «Einstein estaba equivocado» en relación a un trabajo realizado en el museo CosmoCaixa de la ciudad de Barcelona.

Evidentemente, ante una afirmación así, que consigue despertarme del tedio de la mañana, leo atentamente la información. Se indica que el experimento tiene que ver con la mecánica cuántica. Como Albert Einstein no creía que la mecánica cuántica fuese una teoría completa, tenemos titular.

Fíjese el lector en cuál es el procedimiento: primero, Einstein no creía en la mecánica cuántica. Segundo, un grupo de estudiantes realizan un experimento en el que interviene la mecánica cuántica. Tercero, el periodista, que de periodista tiene poco, extrae el siguiente titular: si los estudiantes hablan de mecánica cuántica, como Einstein no creía en la mecánica cuántica, los estudiantes están desacreditando a Einstein.

Es decir, el titular de la noticia no es el experimento, más o menos interesante por supuesto, y me parece estupendo y genial que gente joven vea de primera mano experimentos sobre mecánica cuántica. Ojalá se hiciesen más ejercicios como este. El problema es el titular periodístico: no se pretende ensalzar a los estudiantes aplicados, sino remarcar que esos estudiantes están desacreditando a Albert Einstein.

Voy a decir dos cosas: primera: Einstein era un ser humano asombroso. Cometió errores, por supuesto. Pero sus logros son y están ahí, y siguen siendo, cien años después, completamente válidos.

Segundo: este tipo de periodismo hace muchísimo, muchísimo daño a la ciencia y a la cultura científica de los lectores. No podemos dedicarnos a buscar titulares sensacionalistas y tendenciosos. No podemos hacer entender que Einstein se equivocaba. Debemos explicar que Einstein no acertó en la mecánica cuántica, es cierto, pero no diciendo que un grupo de alumnos le desacreditan en una escuela. Eso no es ciencia. Eso es charlatanería y ganas de llenar páginas de sensacionalismo.

Tenemos que explicar a los alumnos los logros, y por supuesto los fracasos, de Einstein. Pero debemos informar de ello de una forma seria y rigurosa. Este tipo de artículos desacreditando a Einstein, o a otros científicos, es un camino hacia el desprestigio de la misma ciencia. Y así no lograremos construir una base de científicos rigurosos y serios con el futuro de cualquier investigación. Tratándose del diario El País, lamentablemente, este hecho se da en demasiadas ocasiones.

desinformacion

Dime que haces ciencia aunque sea mentira

Continúa la constante cascada de desinformación y mentiras de carácter pseudocientífico en Internet y en Facebook. Noticias que da pena leerlas, no por el tema que tratan, sino por cómo lo tratan y presentan. En esta ocasión, una noticia de Cosmos Magazine, donde “en serio” nos quieren hacer creer que se está trabajando en un motor warp basado en la métrica de Alcubierre. Pero lo peor está al final, y como yo no juego al “clickbait” lo diré ahora: es una noticia de 2014 que se presenta como si fuese de 2016. La fecha del enlace indica 2014. Pero en Facebook lo publican con fecha de noviembre 2016.

Esta noticia no es nueva, pero se reitera y renace de sus cenizas una y otra vez. Vamos pues a dar información real sobre este asunto, una vez más, intentando aclarar la desinformación, o directamente mentiras, que se vierten en el artículo. Vamos a verlo.

nasaLogo-570x450
No. La NASA no prepara un motor Warp

Continuar leyendo «Dime que haces ciencia aunque sea mentira»

Entrelazamiento cuántico y el experimento EPR

Un poco de humor para encarar la nueva semana con ganas. Mi perrita Lyra desde pequeña fue muy inquieta para la ciencia. Su hermanito es, digamos, algo más práctico…

Lo cierto es que el entrelazamiento cuántico es uno de esos fenómenos de la naturaleza que más sorprenden a los físicos de partículas. El propio Einstein quiso demostrar que la mecánica cuántica y el entrelazamiento cuántico iban en contra del principio de localidad de la teoría de la relatividad, un aspecto básico que nos dice que todo fenómeno tiene una causa, y la causa un efecto, que solo se puede transmitir a como máximo la velocidad de la luz.

Sin embargo el entrelazamiento cuántico funciona, y se ha demostrado muchas veces ya. Eso sí: no se transmite información de forma instantánea. Si lo hiciese, la teoría de la relatividad caería como un castillo de naipes.

Actualmente, a los medios de comunicación pocos serios les ha dado por llamar a este efecto «teletransporte cuántico». No lo es, en absoluto, y como digo, no se transmite información. El experimento EPR sí nos dice algo: la incompatibilidad entre mecánica cuántica y relatividad general implica que una teoría mayor, más completa, debe ser descubierta. Se han propuesto varias, entre ellas la teoría de cuerdas, pero ninguna de momento está demostrada empíricamente.

Eso sí, los medios de los que hablaba antes nos pondrán imágenes de Star Trek, y de personas viajando de un punto a otro al instante. Genial, pero imposible de momento. Si algún día puede hacerse está por verse, pero algo así requeriría transmitir trillones de estados de información de cada partícula a otro punto. Algo que sin duda va a tardar mucho, mucho tiempo en ser posible.

Pero quién sabe las sorpresas que nos depara el futuro. Quizás la respuesta esté ahora mismo en los recientes experimentos del CERN que actualmente se analizan. Esperemos que así sea. Pero, de un modo u otro, haremos ciencia, no conjeturas sin base y con el único fin de llenar periódicos y webs sensacionalistas.

entrelazamiento_cuantico

Del éxito al fracaso, pasando por la experiencia

La frase de la semana es de Niels Böhr, el padre de la mecánica cuántica en muchos sentidos (es una paternidad compartida en todo caso, donde él fue un elemento clave).

En un mundo donde parece que el fracaso no se admite, se persigue, y se critica duramente, y en donde nos exigen siempre lo mejor de lo mejor cada día, Böhr nos dice claramente que fracasar no solo es una opción; es además una necesidad. Fracasar nos permite valorar los errores, medirlos, cualificarlos y cuantificarlos, y someterlos a nuestra crítica personal, que ha de ser siempre la primera, la más dura, pero también la más abierta.

Por supuesto que nadie quiere fracasar. Pero el camino al éxito, si este llega, está plagado de fracasos que nos han ayudado a comprender qué pasos hemos de dar. Cuando alguien vive el éxito, mucha gente quiere imitar ese éxito; no saben que esa persona antes tuvo que pasar, casi siempre, un calvario de fracasos y de decepciones. Y, sin embargo, no cejó en su empeño.

Una cosa es importante: el fracaso no garantiza el éxito, por supuesto. Muchas veces no triunfaremos en ningún caso. Pero eso es también un triunfo, si comprendemos por qué ha ocurrido. Ahora bien, el éxito casi nunca está aislado del fracaso. Ambos van de la mano, y ambos se necesitan.

También es importante valorar qué es éxito y qué es fracaso. Si quieres vender mil unidades de algo y lo consigues, habrás triunfado. Si eran un millón, habrás fracasado. ¿Eras realista en tu cálculo? No pretendas crear imposibles. Sé realista.

Examina tus posibilidades. Escucha las críticas. Razona tus pensamientos, y sé extremadamente sincero contigo mismo. La jactancia, la presunción, la arrogancia, solo te harán fracasar hasta el infinito. Sé modesto, y sé claro, y puede que triunfes un día. Puede. No es seguro. Pero habrás iniciado el camino, eso sí puede garantizarse, sin ninguna duda.

42861-frase-un-experto-es-una-persona-que-ha-cometido-todos-los-errores-que-se-pueden-cometerniels-bohr

ER=EPR; vamos señora que se me llevan las teorías de las manos

Nuevo amanecer, nueva teoría revolucionaria. En este caso recibe el conciso nombre de ER=EPR. Habría mucho que hablar de cada lado de esta ecuación, que no es una ecuación matemática, sino la idea de que dos ideas aparentemente no conectadas entre sí, en realidad comparten un mismo principio: ni más ni menos, que el de unir la relatividad general con la mecánica cuántica, el santo grial de los físicos durante los últimos 40 años.

ER hace mención a Einstein-Rosen, que en 1935 publicaron un artículo conjunto que denotaba que, derivada de la teoría de la relatividad general, postulaba la existencia de lo que se ha dado a conocer como agujeros de gusano. Esos pasillos interdimensionales que unirían hipotéticamente dos puntos separados del espacio.

EPR hace mención a la paradoja Einstein-Podolsky-Rosen, que también en los años 30, era una contestación a la mecánica cuántica. Según Einstein, «Dios no juega a los dados» y este documento pretendía demostrar que el elemento probabilístico de la mecánica cuántica era un indicio de que la teoría no estaba completa. Trataban el tema del entrelazamiento cuántico, algo que derivaba en una situación absurda, por cuanto dos partículas, separadas y desconectadas, estaban misteriosamente unidas de algún modo no conocido.

Ahora, bueno en 2013, dos físicos como Maldacena y Susskind, que son dos veteranos expertos en la teoría de cuerdas, postularon que, en realidad, ambas ideas, ER y EPR, son en realidad dos aspectos de la misma conclusión: que las partículas entrelazadas están unidas entre sí mediante un puente Einstein-Rosen, es decir, a través de un agujero de gusano del tamaño de la longitud de Planck.

En este momento he de hacer una parada y advertir al lector: tanto esta idea como la teoría de cuerdas trabajan con longitudes de Planck, que es 10 elevado a la -35, extremadamente inferior al diámetro de un electrón, y muy por debajo de lo mensurable por instrumentos actuales.

La idea se dispara cuando se dice que podría haber una inmensidad de agujeros de gusano, y que incluso agujeros negros podrían estar conectados mediante agujeros de gusano. Esto explicaría la aparente discordancia entre relatividad general y mecánica cuántica. Dice Susskind:

“ER=EPR tells us that the immensely complicated network of entangled subsystems that comprises the universe is also an immensely complicated (and technically complex) network of Einstein-Rosen bridges,” Susskind writes. “To me it seems obvious that if ER=EPR is true it is a very big deal, and it must affect the foundations and interpretation of quantum mechanics.”

¿Qué nos queda? Nos queda lo de siempre: la idea es genial, pero, como en la teoría de cuerdas, trabajar con distancias de Planck implica una imposibilidad real de probar la teoría de forma experimental.

Consejo: si quieres crear una teoría que sea interesante y atractiva, trabaja con distancias y tiempos y longitudes de  Planck. Quedarás como un rey y nadie podrá refutar tu teoría.

Bueno, aunque suene un poco sarcástico, la verdad es que todo esto puede ser cierto, pero tenemos que ir más allá de las ideas, y empezar realmente a pensar en posibilidades que puedan ser probadas. Estamos ahogados en teorías. Cada semana salen dos, y la tercera se la dejo a mitad de precio. Así es difícil hacer ciencia.

Conclusión: la teoría está muy bien y puede tener aspectos muy interesantes, pero empieza a ser habitual ver cómo las teorías llegan y pasan una tras otra. Hay que hacer ciencia, no llenar portadas porque sí. El futuro es interesante, pero recordemos: hasta hace poco, los agujeros de gusano eran modelos matemático-físico teóricos, sin ninguna prueba de que existan. Actualmente lo siguen siendo. Vamos a ver cómo acaba esto, y espero de verdad que no sea otro montón de ideas sin más. Hagamos ciencia, lo cual implica teoría, pero también experimentación. Es fundamental, o nos estaremos perdiendo en papeles llenos de cifras que dicen mucho sobre el mundo de la matemática, y muy poco sobre el mundo real.

wormhole

 

China lanza el primer satélite de telecomunicaciones cuántico

Hace unas entradas (no de mi cabeza, del blog) comenté que Estados Unidos tiene motivos para preocuparse con China sobre la carrera espacial y tecnológica. Y por supuesto, lo contrario también es cierto, todo depende de quienes creas que son los buenos y los malos. Pero en esta ocasión, China está yendo a por todas en un aspecto crucial de su desarrollo: las telecomunicaciones, y más importante, la seguridad de las mismas.

En una época en la que toda la información es susceptible de ser robada, ¿por qué no buscar nuevas alternativas? Eso es lo que se pretende con la computación cuántica. Consiste esta idea en usar computadoras y comunicaciones basadas en las propiedades de la física cuántica, usando partículas como elemento primario de información.

En este sentido, China acaba de lanzar un satélite experimental que va a permitir, si todo va bien, realizar comunicaciones cuánticas con estaciones de tierra, usando partículas entrelazadas cuánticamente. Lo bueno de este sistema es que es virtualmente imposible para un tercero capturar esta información, ya que si no se dispone del otro par entrelazado, la información se pierde irremisiblemente cuando colapsa la función de onda de la partícula.

El sistema es muy sencillo: si la información es capturada, el emisor podrá detectarlo inmediatamente, y detener el proceso de envío en el momento en que esa información comienza a ser capturada. Esto ocurre porque está provocando el colapso de la función de onda de las partículas entrelazadas. No existe sistema físico conocido que pueda robar información de una computadora cuántica debido precisamente a este fenómeno, y ni el más loco escritor de ciencia ficción se atrevería a poner en duda algo así.

Sin duda, un experimento realmente interesante, que nos introduce en el mundo de la computación y las comunicaciones cuánticas, un nuevo horizonte lleno de posibilidades. El futuro se escribe estos días con este experimento, y otros similares que se llevan a cabo en tierra. Google tiene también su prototipo de ordenador cuántico, al igual que IBM. Es cuestión de tiempo que nuestros ordenadores cotidianos sean piezas en un museo. Y yo que me dedico a esto de la informática (sí, a veces hasta trabajo incluso) me temo que también, pero bueno tampoco se pierde tanto. Nos espera un futuro apasionante en este campo.

satelitechino
Oiga, ¿es el espacio? Se ponga